If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+60x-163=0
a = 16; b = 60; c = -163;
Δ = b2-4ac
Δ = 602-4·16·(-163)
Δ = 14032
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14032}=\sqrt{16*877}=\sqrt{16}*\sqrt{877}=4\sqrt{877}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(60)-4\sqrt{877}}{2*16}=\frac{-60-4\sqrt{877}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(60)+4\sqrt{877}}{2*16}=\frac{-60+4\sqrt{877}}{32} $
| 8x-12=2x+54 | | 15x-12=8+3x | | 3x-2/7=1 | | 5w−3=3w+15 | | 13=5s−2 | | 8,8=k⋅(–2,4)+1,6 | | x2−12x−220=0 | | 8k=5+7k | | 7/2.5=35y | | X2-47x+462=0 | | 8x^2+12x+36=0 | | (5x+12)/4=8 | | X+2.5x+2.5x+x=63 | | 55=0.08x | | 3x+7=25. | | 5(c-3=20 | | √2x+14=0 | | -3x+6=-3(x=3) | | -3x+6=-3(x=3 | | 6(c-6)=3(3c+10) | | 8x−3x+10=15 | | 16x^2+2x=400 | | X+2x+15=48 | | 10x^2-28x=16 | | 14x+5x=100000 | | 5c+6=8c | | 8=6+5c | | 2x/3+5=5x/2-6 | | 0.15x-2.04=0.35x+0.03 | | 1-8-x÷3=x | | 2*3.14*x=200 | | -7x-63=14x-35 |